Integrability of the Quantum KdV equation
نویسندگان
چکیده
We present a simple a direct proof of the complete integrability of the quantum KdV equation at c = −2, with an explicit description of all the conservation laws.
منابع مشابه
Compressive and rarefactive dust-ion acoustic solitary waves in four components quantum plasma with dust-charge variation
Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...
متن کاملTrivially related lax pairs of the Sawada-Kotera equation
We show that a recently introduced Lax pair of the Sawada-Kotera equation is nota new one but is trivially related to the known old Lax pair. Using the so-called trivialcompositions of the old Lax pairs with a differentially constrained arbitrary operators,we give some examples of trivial Lax pairs of KdV and Sawada-Kotera equations.
متن کاملCommuting Charges of the Quantum Korteweg-devries and Boussinesq Theories from the Reduction of W ∞ and W 1+∞ Algebras
Integrability of the quantum Boussinesq equation for c = −2 is demonstrated by giving a recursive algorithm for generating explicit expressions for the infinite number of commuting charges based on a reduction of the W∞ algebra. These charges exist for all spins s ≥ 2. Likewise, reductions of the W∞/2 and W(1+∞)/2 algebras yield the commuting quantum charges for the quantum KdV equation at c = ...
متن کاملHamiltonian and Non - Hamiltonian Modeis Pcs Water Waves
A. general theory for determining Hamiltonian model equations from noncanonical perturbation expansions of Hamiltonian systems is applied to the Boussinesq expan sion fcr long, small amplitude waves in shallow water, leading to the Korteweg-deVries equation. New Hamiltonian model equations, including a natural "Hamiltonian ver-cn» of the KdV equation, are proposed. The method also provides a di...
متن کاملThe KdV Action and Deformed Minimal Models
An action is constructed that gives an arbitrary equation in the KdV or MKdV hierarchies as equation of motion; the second Hamiltonian structure of the KdV equation and the Hamiltonian structure of the MKdV equation appear as Poisson bracket structures derived from this action. Quantization of this theory can be carried out in two different schemes, to obtain either the quantum KdV theory of Ku...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991